

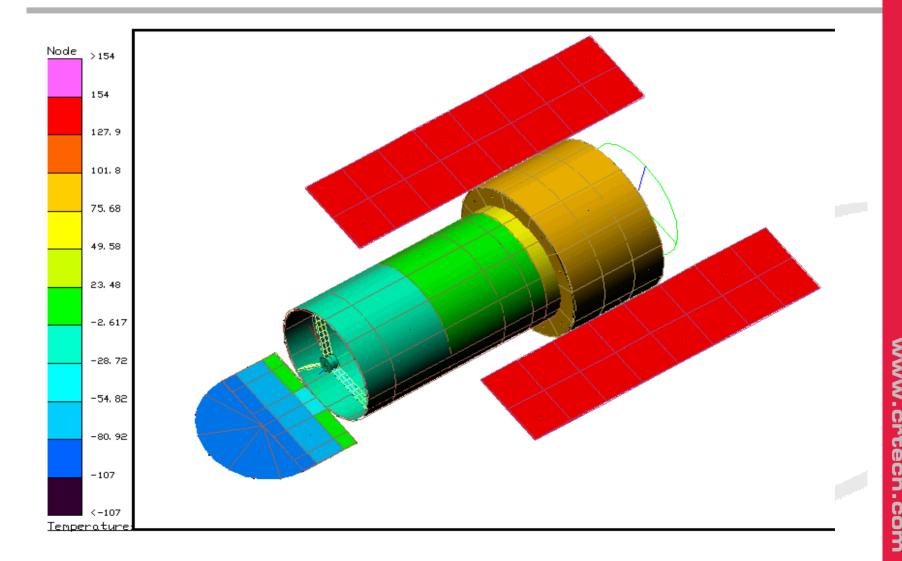
Automated Multidisciplinary Optimization of a Space-based Telescope (OptiOpt[™] Part 2)

TFAWS 2002

Brent Cullimore

C&R TECHNOLOGIES 303.971.0292 Fax 303.971.0035

www.crtech.com


Automated Design Synthesis: Part 2

- Part 1: Analysis codes were integrated, bottlenecks removed, and APIs added to enable external commands
- Final step: Integration with optimization engine
 Engineous' iSIGHT® selected
- Other possible automated analyses:
 - Worst-case scenario searching
 - Calibration to test data
 - ➡DOE/Sensitivity

Statistical design (reliability, tolerancing)

Example: Space-based Telescope Design

Summary of Optimization

Objective

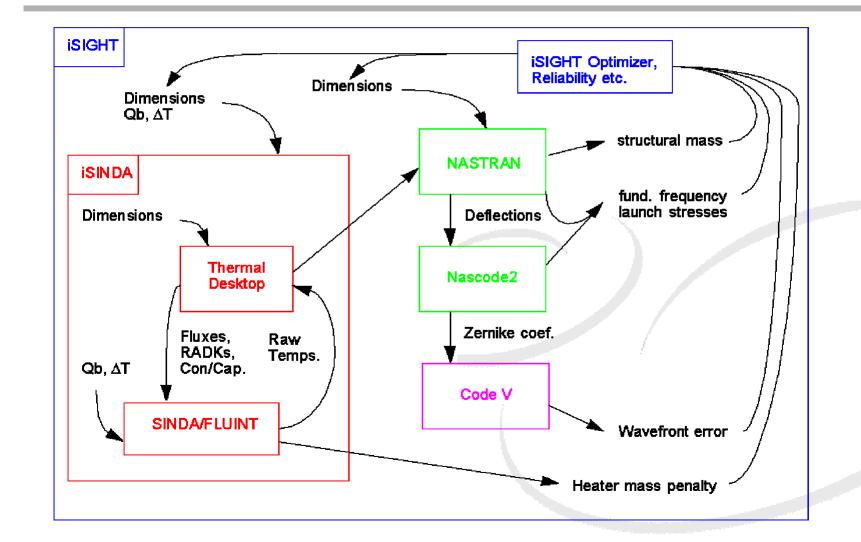
Minimize structural mass plus thermal power penalty

Design Variables

- Stuctural: shell thickness, spider thickness, PM facesheet thickness, flex strut diameters
- Thermal: shell heater power, isothermality

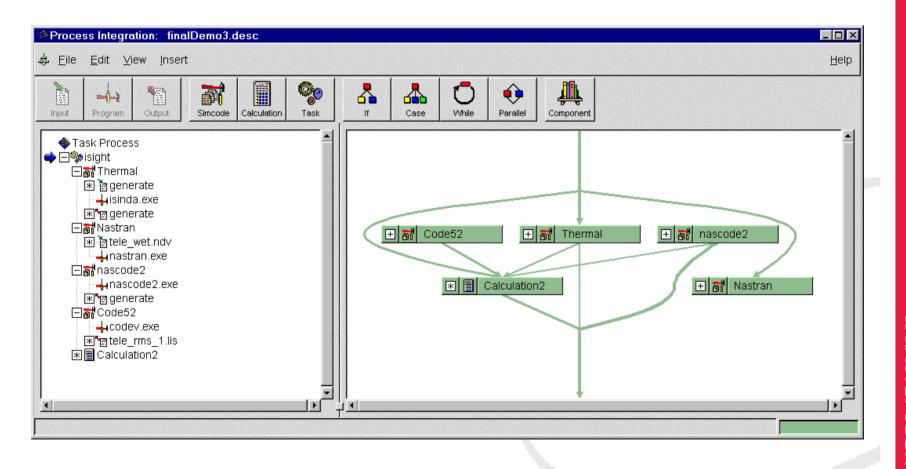
Constraints

- \blacktriangleright Optical: wave front error less than 0.046 λ_v
- Structural: fund freq. (<60Hz), cap launch stresses
- → Thermal: 66°F < $T_{detector}$ < 70°F


Design Variables, Constraints, Objectives

- 4 dimensions and 2 thermal design parameters varied simultaneously
- Mass minimized; mass penalty for heater power
- Optical wavefront error constrained
- Freq. of structural modes and launch stresses constrained

Parameters Task P	lan 🔪 Rul	es 🚶 Databa	ise 🔪				
Inputs Outputs A	Auxiliaries	Constraints			Selected	All	<u>_</u>
Paremeter	Var Ot		Lower Bound		Current Value	Upper Bound	
1 faceThk		•	0.1	_	0.1	≤0.5	
2 strutDia		•	0.05	\leq	0.05	≤ 0.4	
3 spiderThk		•	0.2	\leq		≤ 0.7	
4 shellThk			0.02	_	0.02	≤ 0.08	
5 Pbase		•	0.0		10.0	<u>≤</u> 1000.0	
6 gradient		•	2.0	\leq	20.0	≤ 1000.0	
7 msi		•			0.0189		
8 rms2		•			0.0346		
9 rms3		• <u> · · · · · · · · · · · · · · · · · ·</u>			0.0189		
10 totmass		•			0.0		
11 weight					0.0		
12 powmass		•			0.0		
13 heq			60.0	\leq	0.0		
14 WFE					0.0	≤0.046	
15 strfix1					0.0	≤62000.0	
16 strflx2		•			0.0	≤62000.0	
17 strspid					0.0	≤ 12000.0	
18 Objective		REAL			0.0		
19 Feasibility		INTEGER			0		
20 TaskProcessStatus	i	REAL			-1.0	≤0.0	
•					1		
Sort: NONE		Search	Legend		Columns:	Default	
			Logonal				


SR TECHNOLOGIES

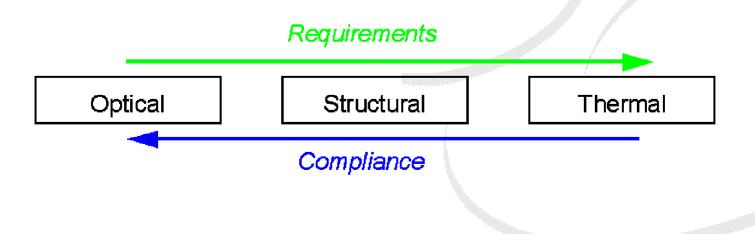
Design Evaluation Procedure: All Performed Automatically

Evaluation Procedure as depicted in iSIGHT

C&R TECHNOLOGIES

Results

Two reasonable designs found (80 evaluations)


- Baseline: Invar shell/spider and ULE ceramic optics
- Alternative: cheaper, lighter aluminum structure and silica optics (usually difficult to achieve due to thermal distortions)

Parameter	Invar	/ULE Design	Aluminum/Silica Design		
Farameter	value	comment	value	comment	
PM facesheet thickness	0.1 in	lower limit	0.1 in	lower limit	
PM strut diameter	0.05 in	lower limit	0.05 in	lower limit	
Spider thickness	0.453 in	limited by fund freq.	0.451 in		
Shell thickness	0.02 in	lower limit	0.02 in	lower limit	
Base shell heater power	0 W 0	lower limit	152 W		
Gradient required	>60 °F	essentially infinite	2 °F	lower limit	
Total mass	155 lb	all structural,	189 lb	66 lb structural	
Total mass	arcor	no thermal	0 601	123 lb thermal	
Fundamental frequency	60 Hz	constraining	75 Hz	not constraining	
Total RMS WFE	0.0404 $\lambda_{\rm v}$	not constraining	$0.046 \ \lambda_{v}$	constraining	

Lessons Learned

- A one-time flow-down of requirements is still needed to generate the initial design
- Care is required to avoid an explosion of design variables for the specialty furthest from the requirements (thermal in this case):

Other Multidisciplinary Integration Environments

- ModelCenter[®] (Phoenix Integration)
- MSC/RD (MSC)
- Pointer[®] (Synapse)
- Visual DOC[®] (VR&D)
- DAKOTA (Sandia National Lab)
- Optimus[®] (LMS)
- BossQuattro (Samtech)

Conclusions

- An means of automatically searching for an optimal thermal/structural/optical design has been demonstrated
 - derived requirements and margin stack-up thereby avoided
- The resulting capability augments but doesn't replace specialists